Morphological Skip-Gram: Replacing FastText characters n-gram with morphological knowledge

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Skip-gram Model with Negative Sampling

This paper explores an incremental training strategy for the skip-gram model with negative sampling (SGNS) from both empirical and theoretical perspectives. Existing methods of neural word embeddings, including SGNS, are multi-pass algorithms and thus cannot perform incremental model update. To address this problem, we present a simple incremental extension of SGNS and provide a thorough theore...

متن کامل

Skip-Gram - Zipf + Uniform = Vector Additivity

In recent years word-embedding models have gained great popularity due to their remarkable performance on several tasks, including word analogy questions and caption generation. An unexpected “sideeffect” of such models is that their vectors often exhibit compositionality, i.e., adding two word-vectors results in a vector that is only a small angle away from the vector of a word representing th...

متن کامل

Riemannian Optimization for Skip-Gram Negative Sampling

Skip-Gram Negative Sampling (SGNS) word embedding model, well known by its implementation in “word2vec” software, is usually optimized by stochastic gradient descent. However, the optimization of SGNS objective can be viewed as a problem of searching for a good matrix with the low-rank constraint. The most standard way to solve this type of problems is to apply Riemannian optimization framework...

متن کامل

Exploring phrase-compositionality in skip-gram models

In this paper, we introduce a variation of the skip-gram model which jointly learns distributed word vector representations and their way of composing to form phrase embeddings. In particular, we propose a learning procedure that incorporates a phrasecompositionality function which can capture how we want to compose phrases vectors from their component word vectors. Our experiments show improve...

متن کامل

A Closer Look at Skip-gram Modelling

Data sparsity is a large problem in natural language processing that refers to the fact that language is a system of rare events, so varied and complex, that even using an extremely large corpus, we can never accurately model all possible strings of words. This paper examines the use of skip-grams (a technique where by n-grams are still stored to model language, but they allow for tokens to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inteligencia Artificial

سال: 2021

ISSN: 1988-3064,1137-3601

DOI: 10.4114/intartif.vol24iss67pp1-17